Metadata Matters

Thomas Kyte
http://asktom.oracle.com/
Did you know…

• The optimizer uses constraints
 – Statistics plus
 – Extended statistics (profiles, virtual columns, etc) plus
 – System statistics plus
 – Dictionary data (object type information) plus
 – The Query plus
 – *All available bits of metadata*

• Constraints are not just about data integrity
 – Not that they would be less useful if they were not…
 – Constraints in a warehouse are crucial for performance (and getting the right answer)
 – Constraints in a transactional system are crucial for getting the right data (and for performance)
Datatypes are Constraints
“Wrong cardinality = Wrong Plan”
Datatypes are important

```sql
ops$tkyte%ORA11GR2> create table t ( str_date, date_date, number_date, data )
  2  as
  3  select to_char( dt+rownum,'yyyymmdd' ) str_date,
  4         dt+rownum date_date,
  5         to_number( to_char( dt+rownum,'yyyymmdd' ) ) number_date,
  6         rpad('*',45,'*') data
  7   from (select to_date('01-jan-1995','dd-mon-yyyy') dt
  8         from all_objects)
  9   order by dbms_random.random
 10  /
Table created.

ops$tkyte%ORA11GR2> create index t_str_date_idx on t(str_date);
ops$tkyte%ORA11GR2> create index t_date_date_idx on t(date_date);
ops$tkyte%ORA11GR2> create index t_number_date_idx on t(number_date);
```
Datatypes are important

ops$tkyte%ORAllGR2> begin
 2 dbms_stats.gather_table_stats
 3 (user, 'T',
 4 method_opt=> 'for all indexed columns size 254',
 5 cascade=> true);
 6 end;
 7 /

PL/SQL procedure successfully completed.
Datatypes are important

ops$tkyte%ORA11GR2> select * from t
 2 where str_date between '20001231' and '20010101';

<table>
<thead>
<tr>
<th>STR_DATE</th>
<th>DATE_DATE</th>
<th>NUMBER_DATE</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>20010101</td>
<td>01-JAN-01</td>
<td>20010101</td>
<td></td>
</tr>
<tr>
<td>20001231</td>
<td>31-DEC-00</td>
<td>20001231</td>
<td></td>
</tr>
</tbody>
</table>

Predicate Information (identified by operation id):

1 - filter("STR_DATE"<='20010101' AND "STR_DATE">='20001231')
Datatypes are important

```sql
ops$tkyte%ORA11GR2> select * from t

2 where number_date between 20001231 and 20010101;

STR_DATE DATE_DATE NUMBER_DATE DATA
-------- --------- ----------- ----------------------- ----------------------
20010101 01-JAN-01 20010101 ..........................................................
20001231 31-DEC-00 20001231 ..........................................................

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Bytes</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
</table>
* 1  | TABLE ACCESS FULL| T    | 254  | 11938 | 208 (1)     | 00:00:03 |

Predicate Information (identified by operation id):

1 - filter("NUMBER_DATE"<=20010101 AND "NUMBER_DATE">=20001231)
Datatypes are important

```sql
ops$tkyte%ORA11GR2> select * from t where date_date
2 between to_date('20001231','yyyymmdd') and to_date('20010101','yyyymmdd');
```

<table>
<thead>
<tr>
<th>STR_DATE</th>
<th>DATE_DATE</th>
<th>NUMBER_DATE</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>20001231</td>
<td>31-DEC-00</td>
<td>20001231</td>
<td>*********************************************</td>
</tr>
<tr>
<td>20010101</td>
<td>01-JAN-01</td>
<td>20010101</td>
<td>*********************************************</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Bytes</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td>1</td>
<td>47</td>
<td>3 (0)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>1</td>
<td>TABLE ACCESS BY INDEX ROWID</td>
<td>T</td>
<td>1</td>
<td>47</td>
<td>3 (0)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>* 2</td>
<td>INDEX RANGE SCAN</td>
<td>T_DATE_DATE_IDX</td>
<td>1</td>
<td></td>
<td>2 (0)</td>
<td>00:00:01</td>
</tr>
</tbody>
</table>

Predicate Information (identified by operation id):

```
2 - access("DATE_DATE">=TO_DATE(' 2000-12-31 00:00:00', 'syyyy-mm-dd hh24:mi:ss')
AND "DATE_DATE"<=TO_DATE(' 2001-01-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss')```
“Wrong Length = Inefficient Memory Use”
Datatypes are Important – Lengths Matter

<table>
<thead>
<tr>
<th>Varchar2(n) where N is “right sized”</th>
<th>Varchar2(4000) for everything (just in ‘case’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Assume 10 columns, average width is 40 characters (some are 80, some are 10…)</td>
<td>• Assume 10 columns, average, minimum, maximum width is 4000</td>
</tr>
<tr>
<td>• 400 bytes per row on a fetch</td>
<td>• 40,000 bytes per row on a fetch</td>
</tr>
<tr>
<td>• Assume array fetch of 100 rows, so array fetch buffer of 40,000 bytes</td>
<td>• Assume array fetch of 100 rows, so array fetch buffer of 4,000,000 bytes</td>
</tr>
<tr>
<td>• Assume 25 open cursors, so 1,000,000 bytes of array fetch buffers</td>
<td>• Assume 25 open cursors, so 100,000,000 bytes</td>
</tr>
<tr>
<td>• Assume connection pool with 30 connections – 30mb</td>
<td>• Assume connection pool with 30 connections – 3gb</td>
</tr>
</tbody>
</table>
Constraints are *Important*
Why constraints matter

• Constraints are facts
• Constraints are more information
• Constraints convey information to the optimizer
• The presence of constraints open up access paths that would not be otherwise available.
• Examples…
“Check Constraints can rewrite queries”
Check constraints are important

ops$tkyte%ORA11GR2> create table t1
 2 as
 3 select * from stage
 4 where object_type in ('TABLE', 'VIEW');
ops$tkyte%ORA11GR2> alter table t1 modify object_type not null;
ops$tkyte%ORA11GR2> alter table t1 add constraint t1_check_otype
 2 check (object_type in ('TABLE','VIEW'));

ops$tkyte%ORA11GR2> create table t2
 2 as
 3 select * from stage
 4 where object_type in ('SYNONYM', 'PROCEDURE');
ops$tkyte%ORA11GR2> alter table t2 modify object_type not null;
ops$tkyte%ORA11GR2> alter table t2 add constraint t2_check_otype
 2 check (object_type in ('SYNONYM','PROCEDURE'));
Check constraints are important

ops$tkyte%ORA11GR2> create or replace view v
 2 as
 3 select * from t1
 4 union all
 5 select * from t2;

View created.

ops$tkyte%ORA11GR2> begin
 2 dbms_stats.gather_table_stats(user, 'T1');
 3 dbms_stats.gather_table_stats(user, 'T2');
 4 end;
 5 /

PL/SQL procedure successfully completed.
Check constraints are important

ops$tkyte%ORA11GR2> select * from v where object_type = 'TABLE';

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Bytes</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td>8967</td>
<td>1164K</td>
<td>147 (1)</td>
<td>00:00:02</td>
</tr>
<tr>
<td>1</td>
<td>VIEW</td>
<td>V</td>
<td>8967</td>
<td>1164K</td>
<td>147 (1)</td>
<td>00:00:02</td>
</tr>
<tr>
<td>2</td>
<td>UNION-ALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 3</td>
<td>TABLE ACCESS FULL</td>
<td>T1</td>
<td>2851</td>
<td>242K</td>
<td>33 (0)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>* 4</td>
<td>FILTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 5</td>
<td>TABLE ACCESS FULL</td>
<td>T2</td>
<td>39</td>
<td>3783</td>
<td>116 (0)</td>
<td>00:00:02</td>
</tr>
</tbody>
</table>

Predicate Information (identified by operation id):

| 3 | filter("OBJECT_TYPE"='TABLE') |
| 4 | filter(NULL IS NOT NULL) |
| 5 | filter("OBJECT_TYPE"='TABLE') |
Check constraints are important

```sql
select * from v where object_type = 'TABLE'
```

<table>
<thead>
<tr>
<th>call</th>
<th>count</th>
<th>cpu</th>
<th>elapsed</th>
<th>disk</th>
<th>query</th>
<th>current</th>
<th>rows</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>total</td>
<td>194</td>
<td>0.00</td>
<td>0.01</td>
<td>0</td>
<td>295</td>
<td>0</td>
<td>2851</td>
</tr>
</tbody>
</table>

Rows

<table>
<thead>
<tr>
<th>Rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>2851</td>
</tr>
</tbody>
</table>

Row Source Operation

<table>
<thead>
<tr>
<th>Rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>2851</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Row Source Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIEW V (cr=295 pr=0 pw=0 time=55056 us cost=147 size=1192611 card=8967)</td>
</tr>
<tr>
<td>UNION-ALL (cr=295 pr=0 pw=0 time=24743 us)</td>
</tr>
<tr>
<td>TABLE ACCESS FULL T1 (cr=295 pr=0 pw=0 time=6088 us cost=33 ...)</td>
</tr>
<tr>
<td>FILTER (cr=0 pr=0 pw=0 time=0 us)</td>
</tr>
<tr>
<td>TABLE ACCESS FULL T2 (cr=0 pr=0 pw=0 time=0 us cost=116)</td>
</tr>
</tbody>
</table>
Check constraints are important

```sql
ops$tkyte%ORA11GR2> alter table t1 drop constraint t1_check_otype;
ops$tkyte%ORA11GR2> alter table t2 drop constraint t2_check_otype;

select * from v where object_type = 'TABLE'
```

<table>
<thead>
<tr>
<th>call</th>
<th>count</th>
<th>cpu</th>
<th>elapsed</th>
<th>disk</th>
<th>query</th>
<th>current</th>
<th>rows</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>total</td>
<td>194</td>
<td>0.00</td>
<td>0.02</td>
<td>0</td>
<td>703</td>
<td>0</td>
<td>2851</td>
</tr>
</tbody>
</table>

Rows	Row Source Operation
2851 | VIEW V (cr=703 pr=0 pw=0 time=27981 us cost=147 size=1192611 card=8967)
2851 | UNION-ALL (cr=703 pr=0 pw=0 time=19690 us)
2851 | TABLE ACCESS FULL T1 (cr=295 pr=0 pw=0 time=5570 us cost=33 ...)
0 | TABLE ACCESS FULL T2 (cr=408 pr=0 pw=0 time=0 us cost=116 ...)
“Not Null = More Access Paths”
Not Null constraints are important

ops$tkyte%ORA11GR2> create table t
 2 as
 3 select * from all_objects;
Table created.

ops$tkyte%ORA11GR2> create index t_idx on t(object_type);
Index created.

ops$tkyte%ORA11GR2> exec dbms_stats.gather_table_stats(user, 'T');
PL/SQL procedure successfully completed.
Not Null constraints are important

ops$tkyte%ORA11GR2> select count(*) from t;

Execution Plan

Plan hash value: 2966233522

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td>1</td>
<td>286 (1)</td>
<td>00:00:04</td>
</tr>
<tr>
<td>1</td>
<td>SORT AGGREGATE</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TABLE ACCESS FULL</td>
<td>T</td>
<td>71482</td>
<td>286 (1)</td>
<td>00:00:04</td>
</tr>
</tbody>
</table>
Not Null constraints are important

ops$tkyte%ORA11GR2> alter table t modify object_type NOT NULL;
Table altered.

ops$tkyte%ORA11GR2> select count(*) from t;

Execution Plan
--- -------
<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td>1</td>
<td>55 (0)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>1</td>
<td>SORT AGGREGATE</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>INDEX FAST FULL SCAN</td>
<td>T_IDX</td>
<td>71482</td>
<td>55 (0)</td>
<td>00:00:01</td>
</tr>
</tbody>
</table>
--- -------------------
Not Null constraints are important

```
ops$tkyte%ORA11GR2> alter table t modify object_type NULL;
ops$tkyte%ORA11GR2> drop index t_idx;
ops$tkyte%ORA11GR2> create index t_idx on t(object_type, 0);

ops$tkyte%ORA11GR2> select count(*) from t;
```

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td>1</td>
<td>61 (0)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>1</td>
<td>SORT AGGREGATE</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>INDEX FAST FULL SCAN</td>
<td>T_IDX</td>
<td>71482</td>
<td>61 (0)</td>
<td>00:00:01</td>
</tr>
</tbody>
</table>
Not Null constraints are important

```
ops$tkyte%ORA11GR2> create table t
  2  as
  3  select case when mod(rownum,1000)=0 then null else object_type end otype,
  4            stage.*
  5  from stage
  6  /
ops$tkyte%ORA11GR2> exec dbms_stats.gather_table_stats( user, 'T' );
ops$tkyte%ORA11GR2> create index t_idx on t(otype);
ops$tkyte%ORA11GR2> analyze index t_idx validate structure;
ops$tkyte%ORA11GR2> select lf_rows, (select count(*) from t) ,
  2       lf_rows- (select count(*) from t) diff
  3  from index_stats;

          LF_ROWS (SELECTCOUNT(*)FROMT)   DIFF
---------------------- ---------------
          71411            71482         -71
```
Not Null constraints are important

ops$tkyte%ORA11GR2> select * from t where otype is null;

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Bytes</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td>71</td>
<td>7526</td>
<td>309 (1)</td>
<td>00:00:04</td>
</tr>
<tr>
<td>* 1</td>
<td>TABLE ACCESS FULL</td>
<td>T</td>
<td>71</td>
<td>7526</td>
<td>309 (1)</td>
<td>00:00:04</td>
</tr>
</tbody>
</table>

Predicate Information (identified by operation id):

1 - filter("OTYPE" IS NULL)
Not Null constraints are important

ops$tkyte%ORA11GR2> select /*+ index(t t_idx) */ */ * from t where otype is null;

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Bytes</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td>71</td>
<td>7526</td>
<td>309 (1)</td>
<td>00:00:04</td>
</tr>
<tr>
<td>* 1</td>
<td>TABLE ACCESS FULL</td>
<td>T</td>
<td>71</td>
<td>7526</td>
<td>309 (1)</td>
<td>00:00:04</td>
</tr>
</tbody>
</table>

Predicate Information (identified by operation id):

1 - filter("OTYPE" IS NULL)
Not Null constraints are important

ops$tkyte%ORA11GR2> drop index t_idx;

Index dropped.

ops$tkyte%ORA11GR2> create index t_idx on t(otype,0);

Index created.
Not Null constraints are important

```
ops$tkyte%ORA11GR2> select * from t where otype is null;
```

```
<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Bytes</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td>71</td>
<td>7526</td>
<td>6 (0)</td>
<td>00:0</td>
</tr>
<tr>
<td>1</td>
<td>TABLE ACCESS BY INDEX ROWID</td>
<td>T</td>
<td>71</td>
<td>7526</td>
<td>6 (0)</td>
<td>00:0</td>
</tr>
<tr>
<td>*  2</td>
<td>INDEX RANGE SCAN</td>
<td>T_IDX</td>
<td>71</td>
<td></td>
<td>2 (0)</td>
<td>00:0</td>
</tr>
</tbody>
</table>

Predicate Information (identified by operation id):

2 - access("OTYPE" IS NULL)
“Tell us how the tables relate and we can remove them from the plan...”
Referential / Entity Integrity Constrains are Important

```sql
ops$tkyte%ORA11GR2> create table emp
 2 as
 3 select *
 4 from scott.emp;
ops$tkyte%ORA11GR2> create table dept
 2 as
 3 select *
 4 from scott.dept;

ops$tkyte%ORA11GR2> begin
 2 dbms_stats.set_table_stats
 3 (user, 'EMP', numrows=>1000000, numblks=>100000);
 4 dbms_stats.set_table_stats
 5 (user, 'DEPT', numrows=>100000, numblks=>10000);
 6 end;
 7 /
```
Referential / Entity Integrity Constraints are Important

```sql
ops$tkyte%ORA11GR2> select ename
 2 from emp, dept
 3 where emp.deptno = dept.deptno;
```

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Bytes</th>
<th>TempSpc</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SELECT STATEMENT</td>
<td></td>
<td>1000K</td>
<td>31M</td>
<td></td>
<td>31468 (1)</td>
<td>00:06:</td>
</tr>
<tr>
<td>*</td>
<td>HASH JOIN</td>
<td></td>
<td>1000K</td>
<td>31M</td>
<td>2448K</td>
<td>31468 (1)</td>
<td>00:06:</td>
</tr>
<tr>
<td>2</td>
<td>TABLE ACCESS FULL</td>
<td>DEPT</td>
<td>100K</td>
<td>1269K</td>
<td></td>
<td>2713 (1)</td>
<td>00:00:</td>
</tr>
<tr>
<td>3</td>
<td>TABLE ACCESS FULL</td>
<td>EMP</td>
<td>1000K</td>
<td>19M</td>
<td></td>
<td>27116 (1)</td>
<td>00:05:</td>
</tr>
</tbody>
</table>

Predicate Information (identified by operation id):

```sql
1 - access("EMP"."DEPTNO"="DEPT"."DEPTNO")
```
Referential / Entity Integrity Constraints are Important

```
ops$tkyte%ORA11GR2> alter table dept add constraint dept_pk primary key(deptno);
Table altered.

ops$tkyte%ORA11GR2> alter table emp add constraint emp_fk_dept foreign key(deptno) references dept(deptno);
Table altered.
```
Referential / Entity Integrity Constrains are Important

ops$tkyte%ORA11GR2> select ename
2    from emp, dept
3    where emp.deptno = dept.deptno;

--------------------------------------------------- ----------------------------
| Id  | Operation          | Name | Rows  | Bytes | TempSpc| Cost (%CPU)| Time
--------------------------------------------------- ----------------------------
| 0 | SELECT STATEMENT   |      | 1000K| 31M  |        | 31468   (1)| 00:06:
| 1 | HASH JOIN          |      | 1000K| 31M  | 2448K | 31468   (1)| 00:06:
| 2 | TABLE ACCESS FULL | DEPT | 100K | 1269K|       | 27113   (1)| 00:00:
| 3 | TABLE ACCESS FULL | EMP  | 1000K| 19M  |        | 27116   (1)| 00:05:
--------------------------------------------------- ----------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
| 1 | filter("EMP"."DEPTNO" IS NOT NULL)
“Tell us how the tables relate and we have more access paths available…”
Referential / Entity Integrity Constraints are Important part II

ops$tkyte%ORA11GR2> create table emp
  2  as
  3  select *
  4  from scott.emp;

ops$tkyte%ORA11GR2> create table dept
  2  as
  3  select *
  4  from scott.dept;

ops$tkyte%ORA11GR2> begin
  2    dbms_stats.set_table_stats
  3       ( user, 'EMP', numrows=>1000000, numblks=>100000 );
  4    dbms_stats.set_table_stats
  5       ( user, 'DEPT', numrows=>100000, numblks=>10000 );
  6  end;
  7  /

Referential / Entity Integrity Constraints are Important part II
Referential / Entity Integrity Constrained are Important part II

ops$tkyte%ORA11GR2> create materialized view mv

2 enable query rewrite
3 as
4 select dept.deptno, dept.dname, count (*)
5 from emp, dept
6 where emp.deptno = dept.deptno
7 group by dept.deptno, dept.dname;

ops$tkyte%ORA11GR2> begin
2 dbms_stats.set_table_stats
3 ( user, 'MV', numrows=>100000, numblks=>10000 );
4 end;
5 /
Referential / Entity Integrity Constraints are Important part II

ops$tkyte%ORA11GR2> select count(*) from emp;

    COUNT(*)
----------
        14

ops$tkyte%ORA11GR2> select * from table(dbms_xplan.display_cursor);

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td></td>
<td>27112 (100)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SORT AGGREGATE</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TABLE ACCESS FULL</td>
<td>EMP</td>
<td>1000K</td>
<td>27112 (1)</td>
<td>00:05:26</td>
</tr>
</tbody>
</table>
Referential / Entity Integrity Constraints are Important part II

ops$tkyte%ORA11GR2> alter table dept add constraint dept_pk primary key(deptno);
Table altered.

ops$tkyte%ORA11GR2> alter table emp add constraint emp_fk_dept foreign key(deptno)
   2 references dept(deptno);
Table altered.

ops$tkyte%ORA11GR2> alter table emp modify deptno NOT NULL;
Table altered.
Referential / Entity Integrity Constrains are Important part II

```sql
ops$tkyte%ORA11GR2> select count(*) from emp;

COUNT(*)

14
```

```sql
ops$tkyte%ORA11GR2> select * from table(dbms_xplan.display_cursor);
```

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Bytes</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td></td>
<td></td>
<td>2713 (100)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SORT AGGREGATE</td>
<td></td>
<td>1</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MAT_VIEW REWRITE ACCESS FULL</td>
<td>MV</td>
<td>100K</td>
<td>1269K</td>
<td>2713 (1)</td>
<td>00:00:33</td>
</tr>
</tbody>
</table>
```
Referential / Entity Integrity Constraints are Important part II

ops$tkyte%ORA11GR2> alter table emp drop constraint emp_fk_dept;
Table altered.

ops$tkyte%ORA11GR2> alter table dept drop constraint dept_pk;
Table altered.

ops$tkyte%ORA11GR2> alter table emp modify deptno NULL;
Table altered.

ops$tkyte%ORA11GR2> insert into emp (empno,deptno) values (1,1);
1 row created.

ops$tkyte%ORA11GR2> exec dbms_mview.refresh('MV');
PL/SQL procedure successfully completed.
Referential / Entity Integrity Constraints are Important part II

ops$tkyte%ORA11GR2> alter table dept
 2 add constraint dept_pk primary key(deptno)
 3 RELY disable NOVALIDATE
 4 /

ops$tkyte%ORA11GR2> alter table emp
 2 add constraint emp_fk_dept
 3 foreign key(deptno) references dept(deptno)
 4 RELY disable NOVALIDATE
 5 /

ops$tkyte%ORA11GR2> alter table emp modify deptno not null NOVALIDATE;
Referential / Entity Integrity Constrains are Important part II

```sql
query_rewrite_integrity  string  enforced

ops$tkyte%ORA11GR2> select count(*) from emp;
   COUNT(*)
----------
     15

ops$tkyte%ORA11GR2> select * from table(dbms_xplan.display_cursor);

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td></td>
<td>27112 (100)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SORT AGGREGATE</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TABLE ACCESS FULL</td>
<td>EMP</td>
<td>1000K</td>
<td>27112 (1)</td>
<td>00:05:26</td>
</tr>
</tbody>
</table>
```
Referential / Entity Integrity Constraints are Important part II

```sql
ops$tkyte%ORA11GR2> alter session set query_rewrite_integrity = trusted;
Session altered.

ops$tkyte%ORA11GR2> select count(*) from emp;
  COUNT(*)
---------
    14

ops$tkyte%ORA11GR2> select * from table(dbms_xplan.display_cursor);
```

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Bytes</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td></td>
<td></td>
<td>2713 (100)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SORT AGGREGATE</td>
<td></td>
<td>1</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MAT_VIEW REWRITE ACCESS FULLMV</td>
<td></td>
<td>100K</td>
<td>1269K</td>
<td>2713 (1)</td>
<td>00:00:33</td>
</tr>
</tbody>
</table>
Dimensions are important
Dimensions

- Dimensions are facts
- Dimensions are more information
- Dimensions convey information to the optimizer
- The presence of Dimensions open up access paths that would not be otherwise available.
- Look familiar?
- The more metadata we assert to the database, the better it can do…
Dimensions

• Describes to Oracle how to “roll up” data
 – You have a DATE column
 • Which implies Month-Year
 – Which implies FY-Quarter
 • Which implies FY
 – Which implies Calendar Year Quarter
 • Which implies Calendar Year
 – So, if you have a materialized view at the Month-Year level…
Dimensions are important

ops$tkyte%ORA11GR2> create table sales
 2 as
 3 select trunc(sysdate,'year')+mod(rownnum,366) trans_date,
 4 mod(rownnum,100) cust_id,
 5 round(dbms_random.value(1,1000),2) sales_amount
 6 from (select level l from dual connect by level <= 350000)
 7 /
Table created.

A years worth of sales data...
For 100 customers...
With random sales amounts...

ops$tkyte%ORA11GR2> exec dbms_stats.gather_table_stats(user, 'SALES');
PL/SQL procedure successfully completed.
Dimensions are important

```sql
create table time_hierarchy
as
select trans_date day,
       month_year,
       cast(
            to_char(month_year,'yyyy')+
            case when to_char(month_year,'mm')>=6 then 1 else 0 end || '-' ||
            (mod(to_char(add_months(month_year,+1),'q')+1, 4 )+1) as varchar2(6)
       ) fy_qtr,
       to_char(month_year,'yyyy') fy,
       to_char(month_year,'yyyy-q') cy_qtr,
       to_char(month_year,'yyyy') cy
from (select distinct trans_date, trunc(trans_date,'mm') month_year from sales);
```

- **Trans_date** is primary key (the day)
- **Month_year** is a mapping of date to month in a year
- **FY_QTR** is a mapping of date to fiscal year/qtr
- **FY** is a mapping of date to fiscal year
- **CY_QTR** is a mapping of date to calendar year/qtr
- **CY** is a mapping of date to calendar year
Dimensions are important

ops$tkyte%ORA11GR2> exec dbms_stats.gather_table_stats(user, 'TIME_HIERARCHY');
PL/SQL procedure successfully completed.

ops$tkyte%ORA11GR2> alter table time_hierarchy add constraint th_pk primary key(day);
Table altered.

ops$tkyte%ORA11GR2> alter table sales add constraint sales_fk
 2 foreign key(trans_date)
 3 references time_hierarchy(day);
Table altered.

ops$tkyte%ORA11GR2> alter table sales modify trans_date not null;
Table altered.
create materialized view mv

2 build immediate
3 refresh on demand
4 enable query rewrite
5 as
6 select sales.cust_id, sum(sales.sales_amount) sales_amount,
 time_hierarchy.month_year
7 from sales, time_hierarchy
8 where sales.trans_date = time_hierarchy.day
9 group by sales.cust_id, time_hierarchy.month_year
10 /

Materialized view created.

exec dbms_stats.gather_table_stats(user, 'MV');

PL/SQL procedure successfully completed.
Dimensions are important

ops$tkyte%ORA11GR2> select time_hierarchy.month_year, sum(sales_amount)
 2 from sales, time_hierarchy
 3 where sales.trans_date = time_hierarchy.day
 4 group by time_hierarchy.month_year
 5 /

...
13 rows selected.

ops$tkyte%ORA11GR2> select * from table(dbms_xplan.display_cursor);

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Bytes</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>HASH GROUP BY</td>
<td></td>
<td>13</td>
<td>182</td>
<td>5 (100)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>2</td>
<td>MAT_VIEW REWRITE ACCESS FULL</td>
<td>MV</td>
<td>1250</td>
<td>17500</td>
<td>4 (0)</td>
<td>00:00:01</td>
</tr>
</tbody>
</table>
Dimensions are important

```sql
ops$tkyte%ORA11GR2> select time_hierarchy.cy_qtr, sum(sales_amount)
    2    from sales, time_hierarchy
    3   where sales.trans_date = time_hierarchy.day
    4  group by time_hierarchy.cy_qtr;

...  
```

```sql
ops$tkyte%ORA11GR2> select * from table(dbms_xplan.display_cursor);
```

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Bytes</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td></td>
<td></td>
<td>300 (100)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>HASH GROUP BY</td>
<td></td>
<td>5</td>
<td>180</td>
<td>300 (5)</td>
<td>00:00:04</td>
</tr>
<tr>
<td>* 2</td>
<td>HASH JOIN</td>
<td></td>
<td>366</td>
<td>13176</td>
<td>299 (5)</td>
<td>00:00:04</td>
</tr>
<tr>
<td>3</td>
<td>VIEW</td>
<td>VW_GBC_5</td>
<td>366</td>
<td>7686</td>
<td>295 (5)</td>
<td>00:00:04</td>
</tr>
<tr>
<td>4</td>
<td>HASH GROUP BY</td>
<td></td>
<td>366</td>
<td>4758</td>
<td>295 (5)</td>
<td>00:00:04</td>
</tr>
<tr>
<td>5</td>
<td>TABLE ACCESS FULL</td>
<td>SALES</td>
<td>350K</td>
<td>4443K</td>
<td>285 (1)</td>
<td>00:00:04</td>
</tr>
<tr>
<td>6</td>
<td>TABLE ACCESS FULL</td>
<td>TIME_HIERARCHY</td>
<td>366</td>
<td>5490</td>
<td>3 (0)</td>
<td>00:00:01</td>
</tr>
</tbody>
</table>
Dimensions are important

```sql
ops$tkyte%ORA11GR2> create dimension time_hierarchy_dim

2      level day          is time_hierarchy.day
3      level month_year   is time_hierarchy.month_year
4      level cy_qtr       is time_hierarchy.cy_qtr
5      level cy           is time_hierarchy.cy
6      level fy_qtr       is time_hierarchy.fy_qtr
7      level fy           is time_hierarchy.fy
8      hierarchy cy_rollup
9      (  day child of month_year child of cy_qtr child of cy)
10     hierarchy fy_rollup
11     (  day child of month_year child of fy_qtr child of fy)
12     /

Dimension created.
```
ops$tkyte%ORA11GR2> alter session set query_rewrite_integrity=trusted;

ops$tkyte%ORA11GR2> select time_hierarchy.cy_qtr, sum(sales_amount)
 2 from sales, time_hierarchy
 3 where sales.trans_date = time_hierarchy.day
 4 group by time_hierarchy.cy_qtr;

...

ops$tkyte%ORA11GR2> select * from table(dbms_xplan.display_cursor);

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Bytes</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td></td>
<td></td>
<td>10 (100)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>HASH GROUP BY</td>
<td></td>
<td>5</td>
<td>145</td>
<td>10 (30)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>*2</td>
<td>HASH JOIN</td>
<td></td>
<td>4423</td>
<td>125K</td>
<td>9 (23)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>3</td>
<td>VIEW</td>
<td></td>
<td>46</td>
<td>690</td>
<td>4 (25)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>4</td>
<td>HASH UNIQUE</td>
<td></td>
<td>46</td>
<td>690</td>
<td>4 (25)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>5</td>
<td>TABLE ACCESS FULL</td>
<td>TIME_HIERARCHY</td>
<td>366</td>
<td>5490</td>
<td>3 (0)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>6</td>
<td>MAT_VIEW REWRITE ACCESS FULL</td>
<td>MV</td>
<td>1250</td>
<td>17500</td>
<td>4 (0)</td>
<td>00:00:01</td>
</tr>
</tbody>
</table>

Dimensions are important
ops$tkyte%ORA11GR2> select time_hierarchy.fy, sum(sales_amount)
 2 from sales, time_hierarchy
 3 where sales.trans_date = time_hierarchy.day
 4 group by time_hierarchy.fy;

ops$tkyte%ORA11GR2> select * from table(dbms_xplan.display_cursor);

<table>
<thead>
<tr>
<th>Id</th>
<th>Operation</th>
<th>Name</th>
<th>Rows</th>
<th>Bytes</th>
<th>Cost (%CPU)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SELECT STATEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>HASH GROUP BY</td>
<td></td>
<td>2</td>
<td>52</td>
<td>10 (30)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>* 2</td>
<td>HASH JOIN</td>
<td></td>
<td>1827</td>
<td>47502</td>
<td>9 (23)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>3</td>
<td>VIEW</td>
<td></td>
<td>19</td>
<td>228</td>
<td>4 (25)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>4</td>
<td>HASH UNIQUE</td>
<td></td>
<td>19</td>
<td>228</td>
<td>4 (25)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>5</td>
<td>TABLE ACCESS FULL</td>
<td>TIME_HIERARCHY</td>
<td>366</td>
<td>4392</td>
<td>3 (0)</td>
<td>00:00:01</td>
</tr>
<tr>
<td>6</td>
<td>MAT_VIEW REWRITE ACCESS FULL</td>
<td>MV</td>
<td>1250</td>
<td>17500</td>
<td>4 (0)</td>
<td>00:00:01</td>
</tr>
</tbody>
</table>

Dimensions are important
In Short
In Short...

- **Datatypes Count**
 - For more than just data integrity, not that data integrity wouldn’t be *enough* by itself

- **Proper Lengths matter**
 - For more than just data integrity…

- **Constraints are important**
 - For OLTP
 - And *especially for performance* in a warehouse

- **Metadata Matters**
 - Dimensions, Constraints, NULLs, Datatypes – everything you can tell us about the data – helps us process the data
“Question Authority, Ask Questions”