
1

<Insert Picture Here>

Kuassi Mensah

Database Access Services, Database APIs, and Net Services

“Mirror, Mirror: Tell me Why my Application Sucks”

3

The following is intended to outline our general

product direction. It is intended for information

purposes only, and may not be incorporated into

any contract. It is not a commitment to deliver any

material, code, or functionality, and should not be

relied upon in making purchasing decisions.

The development, release, and timing of any

features or functionality described for Oracle’s

products remains at the sole discretion of Oracle.

4

Focus of this presentation

• Not about SQL tuning

• Not about Oracle Database instance tuning

• It is about using Database performance tools to

uncover inefficient database access

• It is about implementing best practices for writing

applications for efficient Database access

• It is about any programming language

5

<Insert Picture Here>

Agenda

• Database Performance Monitoring Tools

• Use Cases & Best Practices

‒ Connections

‒ Hard Parses

‒ Soft Parses

‒ Wrong Default

‒ Array DML

‒ Stored Procedures

‒ Client-side Result Set Caching

‒ LOBs

6

Database Performance

Monitoring Tools

7

AWR and ADDM
Enterprise Manager - Automatic Performance Diagnostics

Automatic Workload

Repository
Snapshots

Performance &
Management

Advisors

High
Load
SQL

CPU & I/O
Issues

Connection
Issues

Self-Diagnostic
Engine

9

Getting ADDM/AWR Reports

• Create an AWR Snapshot
BEGIN

DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT ();

END;

• Run your workload

• Create a second AWR Snapshot
BEGIN

DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT ();

END;

• Generate reports
@$ORACLE_HOME/rdbms/admin/addmrpt.sql

@$ORACLE_HOME/rdbms/admin/awrrpt.sql

10

Connection Performance

11

WTF with Connections?

• Top Two out of “Top Ten Mistakes Found In Oracle
Systems”:

‒ Bad Connection Management

‒ Bad Use of Cursors and the Shared Pool

• Database Connections expensive to create

– Spawn O/S process, network connection, several roundtrips

– Associated database authentication and session creation

• Database Connections are expensive to tear down!

• Repeatedly Connecting/Disconnecting can be a huge

scaling issue

12

Connections Statistics in AWR report

13

Connections

ADDM Recommendations

Finding 3: Session Connect and Disconnect

Impact is 9.59 active sessions, 80.97% of total activity.

Session connect and disconnect calls were consuming significant database time.

Recommendation 1: Application Analysis

Estimated benefit is 9.59 active sessions, 80.97% of total activity.

--

Action

Investigate application logic for possible reduction of connect and

disconnect calls. For example, you might use a connection pool scheme in

the middle tier.

14

Java Universal Connection Pool

Main Thread:

// Create a data source

PoolDataSource pds = new PoolDataSourceImpl();

System.out.println ("Connecting to " + url);

// Set DataSource properties

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");

pds.setURL(url);

pds.setUser(user);

pds.setPassword(password);

pds.setConnectionPoolName(“MyPool");
pds.setMinPoolSize(10);

pds.setMaxPoolSize(100); // Set DataSource properties

Thread:

// Obtain a connection

connection = dataSource.getConnection();

// run the workload

doWork(connection);

// close the connection when done

connection.close();

16

Database Resident Connection Pool (DRCP)
C, C++, PHP, Python, Perl

• Scales to tens of thousands of database connections
even on a commodity box

• Indispensable for sharing connections across middle
tier hosts

• Fallback when there is no application tier connection
pooling

• Enable with dbms_connection_pool.start_pool

• Connect String
– Easy Connect: //localhost:1521/oowlab:POOLED

– TNS Connect String: (SERVER=POOLED)

17

Hard Parsing

18

Hard Parsing

• Hard Parse is expensive

– Creates shared cursor in SGA

– Causes library cache latch contention

– Causes shared pool contention

– Causes scalability issues

19

Hard Parsing: AWR report

20

Hard Parsing: more from the same AWR report

21

Hard Parsing: ADDM Recommendations

Finding 2: Hard Parse Due to Literal Usage

Impact is 8.32 active sessions, 79.74% of total activity.

SQL statements were not shared due to the usage of literals. This resulted in

additional hard parses which were consuming significant database time.

Recommendation 1: Application Analysis

Estimated benefit is 8.32 active sessions, 79.74% of total activity.

--

Action

Investigate application logic for possible use of bind variables instead

of literals.

Action

Alternatively, you may set the parameter "cursor_sharing" to "force".

Rationale

At least 39 SQL statements with FORCE_MATCHING_SIGNATURE

5551823750033335619 and PLAN_HASH_VALUE 1833546154 were found to be

using literals. Look in V$SQL for examples of such SQL statements.

22

Hard Parsing Best Practices

• Avoid Hard Parsing with Bind Variables

– Reduces hard parses on the server

– Reduces risk of SQL Injection: potential security issue

23

Hard Parsing Best Practices

Bind Variables in Java

• Instead of:
String query = "SELECT EMPLOYEE_ID, LAST_NAME, SALARY FROM "

+"EMPLOYEES WHERE EMPLOYEE_ID = "

+ generateNumber(MIN_EMPLOYEE_ID, MAX_EMPLOYEE_ID);

pstmt = connection.prepareStatement(query);

rs = pstmt.executeQuery();

• Change to:

String query = "SELECT EMPLOYEE_ID, LAST_NAME, SALARY FROM "

+"EMPLOYEES WHERE EMPLOYEE_ID = ?";

pstmt = connection.prepareStatement(query);

pstmt.setInt(1, n);

rs = pstmt.executeQuery();

24

Hard Parsing Best Practices

Bind Variables in C (OCI)

static char *MY_SELECT = "select employee_id, last_name, salary from \

employees where employee_id = :EMPNO";

OCIBind *bndp1;

OCIStmt *stmthp;

ub4 emp_id;

OCIStmtPrepare2 (svchp, &stmthp, /* returned stmt handle */

errhp, /* error handle */

(const OraText *) MY_SELECT,

strlen((char *) MY_SELECT),

NULL, 0, /* tagging parameters:optional */

OCI_NTV_SYNTAX, OCI_DEFAULT);

/* bind input parameters */

OCIBindByName(stmthp, &bndp1, errhp, (text *) ":EMPNO",

-1, &(emp_id), sizeof(emp_id), SQLT_INT,

NULL, NULL, NULL, 0, NULL, OCI_DEFAULT);

25

Hard Parsing Best Practices

Literal Replacement

• Fallback if application cannot be changed to use

binds

• init.ora parameter
– CURSOR_SHARING={FORCE|SIMILAR|EXACT}

– Default is EXACT

26

Soft Parsing

27

Soft Parsing

• Soft Parsing

– Session executes a statement that exists in shared pool

– Creates session specific cursor context

– Repeats metadata processing

28

Soft Parsing: AWR report

29

Soft Parsing: ADDM

Finding 3: Soft Parse

Impact is 1.1 active sessions, 10.59% of total activity.

--

Soft parsing of SQL statements was consuming significant database time.

Recommendation 1: Application Analysis

Estimated benefit is 1.1 active sessions, 10.59% of total activity.

Action

Investigate application logic to keep open the frequently used cursors.

Note that cursors are closed by both cursor close calls and session

disconnects.

30

Soft Parsing Best Practices

• Use Statement Caching

– Keeps frequently used session cursors open

– Reduces soft parses on the Server

• Not only faster but more scalable

– Cuts repeated metadata processing

– Consumes less network bandwidth

– Cuts code path in driver/application tier

31

Soft Parsing Best Practices

Statement Caching in Java

// Obtain a connection

connection = dataSource.getConnection();

// Enable statement caching

((OracleConnection)connection).setStatementCacheSize(20);

((OracleConnection)connection).setImplicitCachingEnabled(true);

32

Soft Parsing Best Practices

Statement Caching in C (OCI)

• Initialize the OCI Session Pool with statement cache
ub4 stmt_cachesize = 20;

/* set the statement cache size for all sessions in the pool */

OCIAttrSet(spoolhp, OCI_HTYPE_SPOOL, &stmt_cachesize, 0,

OCI_ATTR_SPOOL_STMTCACHESIZE, errhp);

/* create a homogeneous session pool */

OCISessionPoolCreate(envhp, errhp,

spoolhp, /* session pool handle */

. . .,

OCI_SPC_HOMOGENEOUS|

OCI_SPC_STMTCACHE); /* modes */

• Use new flavors of prepare/release calls
– OCIStmtPrepare2(), OCIStmtRelease()

33

Soft Parsing Best Practices

Session Cached Cursors in the Database

• Fallback if you cannot change the application to use

statement caching

• session_cached_cursors = X

– Defaults have changed in various releases

– Oracle Database 11g Default = 50

34

Wrong Default

35

Wrong Default: AWR report

36

AWR Report: excessive transaction activity

37

Wrong Default: ADDM Recommendations

Finding 2: Commits and Rollbacks

Impact is 15.69 active sessions, 90.54% of total activity.

--

Waits on event "log file sync" while performing COMMIT and ROLLBACK operations

were consuming significant database time.

Recommendation 1: Application Analysis

Estimated benefit is 15.69 active sessions, 90.54% of total activity.

Action

Investigate application logic for possible reduction in the number of

COMMIT operations by increasing the size of transactions.

Rationale

The application was performing 345218 transactions per minute with an

average redo size of 483 bytes per transaction.

38

Wrong Default

Auto Commits

• Beware. Many database drivers (e.g. JDBC) have

auto commit on

– Causes more transactions, log flushes

– Increases response time

– Breaks atomicity of the transactions

• Use driver specific knob to turn off auto commits

– e.g. JDBC

• conn.setAutoCommit(false);

39

Array DMLs

40

Array Fetch size from V$SQL example

SQL> select sql_text, executions, fetches, rows_processed from V$SQL

where sql_text like 'select city from locations';

SQL_TEXT EXECUTIONS FETCHES ROWS_PROCESSED

------------------------------ ---------- ---------- --------------

select city from locations 8800 26400 202400

• Looking at V$SQL

– ROWS_PROCESSED/EXECUTION = 23

– Bump up client side prefetch or array-fetch to 24

– Fetches all rows in one roundtrip (instead of three)

• V$SQL information can get aged out
– Same statistics available via persistent AWR tables

– DBA_HIST_SQLSTAT, DBA_HIST_SQLTEXT

41

Array Fetch size from Enterprise Manager

42

Array Fetching in Java

String query = "SELECT EMPLOYEE_ID, LAST_NAME FROM EMPLOYEES "

+" WHERE EMPLOYEE_ID > ? "

+" ORDER BY EMPLOYEE_ID";

pstmt = connection.prepareStatement(query);

pstmt.setInt(1, generateNumber(MIN_EMPLOYEE_ID, MAX_EMPLOYEE_ID));

pstmt.setFetchSize(20);

rs = pstmt.executeQuery();

ResultSetMetaData rsmd = rs.getMetaData();

int columnCount = rsmd.getColumnCount();

while (rs.next()) {

for(int i = 1; i <= columnCount; ++i)

System.out.println(rsmd.getColumnName(i) +"["

+rsmd.getColumnTypeName(i) +"]: "

+rs.getString(i));

}

44

Array DML in Java

String dml = "UPDATE EMPLOYEES SET SALARY = ?"

+" WHERE EMPLOYEE_ID = ?";

pstmt = connection.prepareStatement(dml);

((OraclePreparedStatement)pstmt).setExecuteBatch(UPDATE_COUNT);

for(int i = 0; i < UPDATE_COUNT; ++i)

{

pstmt.setInt(1, generateNumber(MIN_SALARY, MAX_SALARY));

pstmt.setInt(2, generateNumber(min, max));

pstmt.executeUpdate();

completedOp++;

}

47

Stored Procedures

48

Stored Procedures and Best Practices

• Bundle multiple SQL statements in one call

– Use anonymous blocks or stored procedures

– Eliminates roundtrips to database

– Eliminates moving data between database and client

• Can improve performance dramatically

• Monitor roundtrips and bytes transferred stats

– High values may indicate optimization opportunities

• Oracle furnishes Java and PL/SQL Stored

Procedures

49

Stored Procedures: AWR report

50

Client-side Result Caching

51

Identifying Candidate Queries for Client Result

Caching from

• Identify top SELECT statements

– BY CPU

– BY Elapsed Time

• Pick queries

– On tables that are not updated often

– With result sets can fit in available client memory

52

Identifying Candidate Queries for Client Result

Caching from AWR

53

Identifying Candidate Queries for Client Result

Caching from AWR

54

Result Set Caching with Oracle Database

• 11gR2: choose tables or view to be cached

Caching is transparent to the application

create table sales (...) result_cache

alter table last_name result_cache

create view v2 as

select /*+ result cache */ col1, coln from t1

• 11gR1: developer must add hint to the SQL query
select /*+ result_cache */ last_name from employees

55

Transparent Client-side Result Set Cache

• The Query Results Set is Cached on the client-side

• Cache Consistency is maintained by the driver (using

Query Change Notification

Application Server

Database

Consistent
Caching

• init.ora parameter

CLIENT_RESULT_CACHE_SIZE

56

Niles Benchmark Performance Improvements

0%

100%

200%

300%

400%

500%

600%

Improvement

DB CPU Reduction:

Up to
600%

0%

20%

40%

60%

80%

100%

120%

140%

Improvement

Response Time :

Up to
15-22% Faster

57

LOBs

58

LOBs and Best Practices

• LOB API

– Recommended for offset based access

– Use for large LOBs (MBs)

– Extra roundtrips (pre 11g) to get data, length, chunk-size

• Data API

– Handle LOBs like LONG or LONG RAW columns

– Recommended for small LOBs

– No extra roundtrips

• Oracle Database 11g Improvements for LOBs

– BASIC LOBs: Tune SDU & Use PreFetching

– SECUREFILES LOBs: Vectored I/O (a.k.a. Zero Copy

network transfer)

59

BASIC LOBs

Optimize SDU_SIZE for Large Data Transfers

• Controls SQL*Net packet size

• Default is 8k starting with Oracle Database 11g

• Set it upto 64k (with Oracle 11gR2) if application does

– Large Result set array fetches

– Large Array DML operations

– Large PL/SQL IN/OUT bind transfers

– Needs to be set on both client and server

• Monitor network stats in AWR

60

setLobPrefetchsize()

select name, bio

from bios_tab

Parse +

Execute +

Fetch metadata +

Fetch LOB data +

BASIC LOB
LOB Prefetching

ResultSet

Internal BufferResult Set Copy

Faster Lob fetching in a single roundtrip

61

LOB PreFetching Performance

Throughput (per sec)

62

setupSecureFile()

Blob.getBytes()
Fetch/Stream LOB data

directly (bypass internal

buffer)

Large Reads/Writes

• BASIC LOBs: internal buffer copy are expensive

• SECUREFILE LOBS: “Zero-copy IO” or “Vectored i/o mechanism”

SecureFiles LOBs
Optimize Very Large LOBs operations

Result Set

63

Application Development Best Practices

• Connection Pooling

• Bind Variables

• Statement Caching

• Turn off Auto Commits

• Reducing Roundtrips

– Array DML

– Array Fetching and Prefetching

– PL/SQL and Java stored procedures

• Stored Procedures

• Result Caching

• LOBs/Secure Files

64

White Paper

• Building High Performance Drivers for Oracle

Database 11g: OCI Tips and Techniques

– www.oracle.com/technology/tech/oci/pdf/building-best-drivers.v9.pdf

65

Q & A

66

67

