

Oracle Database Consolidation It's not all about Oracle database 12c!

Advanced PL/SQL Developer

Tim Hall

Oracle ACE Director
Oracle ACE of the Year 2006

OakTable Network
OCP DBA (7, 8, 8i, 9i, 10g, 11g)

OCP Advanced PL/SQL Developer

Oracle Database: SQL Certified Expert

http://oracle-base.com

Books
Oracle PL/SQL Tuning
Oracle Job Scheduling

Articles →

Scripts

Blog

Certification

Misc →

About

Search

8i | 9i | 10g | 11g | 12c | Misc | PL/SQL | SQL | RAC | Linux

Latest Articles

Upgrade Oracle Enterprise Manager Cloud Control 12c Release 4 (12cR4) to Release 5 (12cR5) ►
This article describes a simple upgrade of Enterprise Manager Cloud Control 12c Release 4 (12cR4) to Release 5 (12cR5).

LATERAL Inline Views, CROSS APPLY and OUTER APPLY Joins in Oracle Database 12c Release 1 (12.1)

Learn the new variations on inline views and joins available in Oracle 12c.

Auditing Enhancements (Audit Policies and Unified Audit Trail) in Oracle Database 12c Release 1 (12.1)

The introduction of audit policies and the unified audit trail simplifies the configuration of database auditing in Oracle 12c.

Oracle Enterprise Manager Cloud Control 12c Release 5 Installation on Oracle Linux 5.11 and 6.6

This article describes the installation of Oracle Enterprise Manager Cloud Control 12c Release 5 on Oracle Linux 5.11 and 6.6.

Amazon Web Services (AWS): Relational Database Services (RDS) for SQL Server

This article describes the creation of a database using Amazon Web Services (AWS) Relational Database Services (RDS) for SQL Server.

Amazon Web Services (AWS): Relational Database Services (RDS) for Oracle

This article describes the creation of a database using Amazon Web Services (AWS) Relational Database Services (RDS) for Oracle.

Amazon Web Services (AWS): Relational Database Services (RDS) for MySQL

This article describes the creation of a database using Amazon Web Services (AWS) Relational Database Services (RDS) for MySQL.

Latest Videos

Check out my YouTube channel here.

- NULL-Related Functions
- Thoughts on the Oracle Ace Program
- DBMS_RANDOM : Generating Random Data
- UTL_MATCH : String Matching
- Top-N Queries
- Oracle Data Redaction
- Why are you starting a YouTube channel?

Quick Links

- Multitenant Articles
- · Writing Tips
- · Public Speaking Tips

You can follow me on these networks:

- Twitter (@oraclebase)
- Facebook
- Google+ 8 (Me)
- YouTube

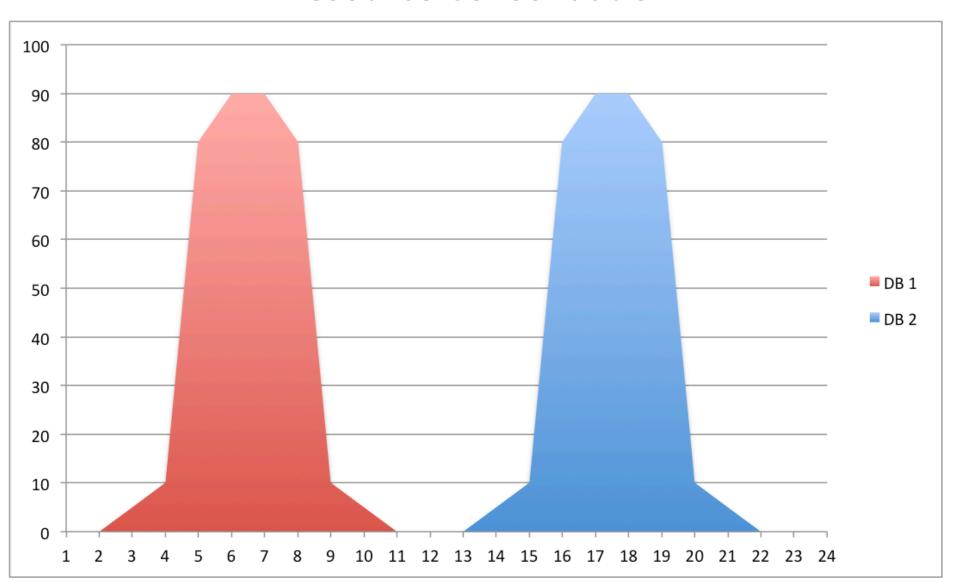
You can get an oracle-base.com t-shirt here.



Agenda

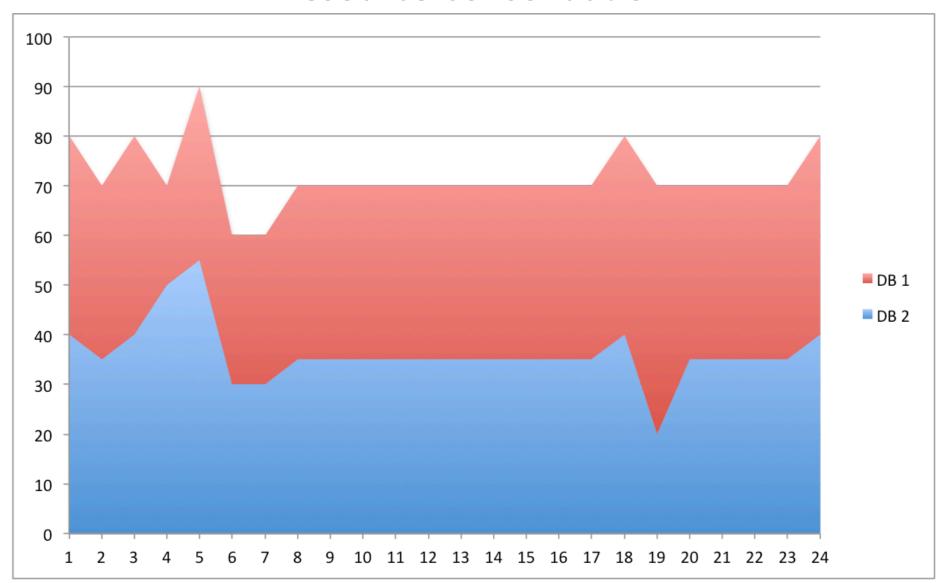
- Basic Resource Consolidation
- Virtualization
- Containers
- Multi-Instance
- Schema Consolidation
- Multitenant Option
- Cloud?


Basic Resource Consolidation


Basic Resource Consolidation

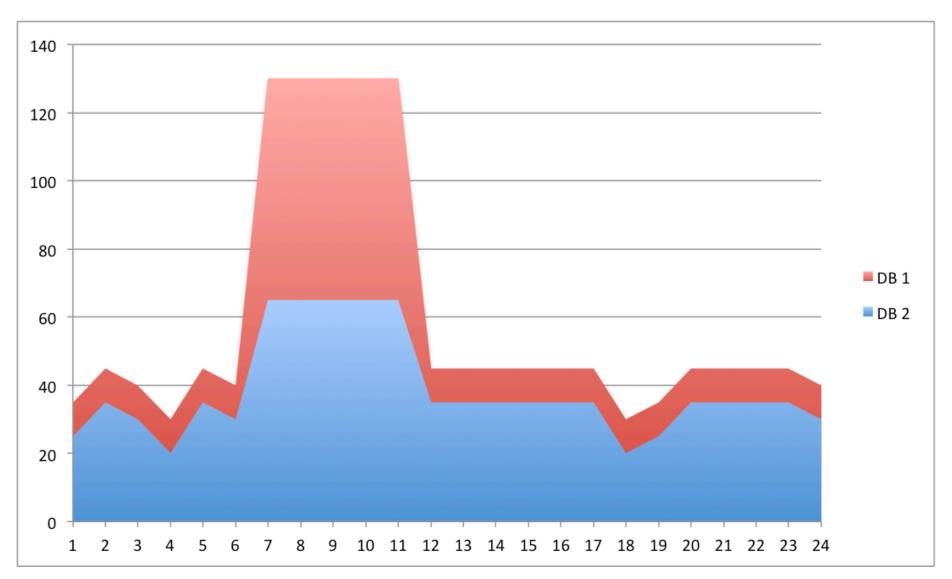
- Is it possible to consolidate your workloads? (CPU, RAM, Disk, Network)
- Do peak loads happen at different times of the day?

Resource Consolidation

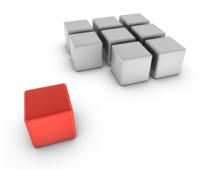

Basic Resource Consolidation

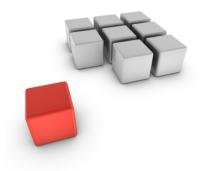
- Is it possible to consolidate your workloads? (CPU, RAM, Disk, Network)
- Do peak loads happen at different times of the day?
- Does combined resource usage stay below 100% during the day?


Resource Consolidation

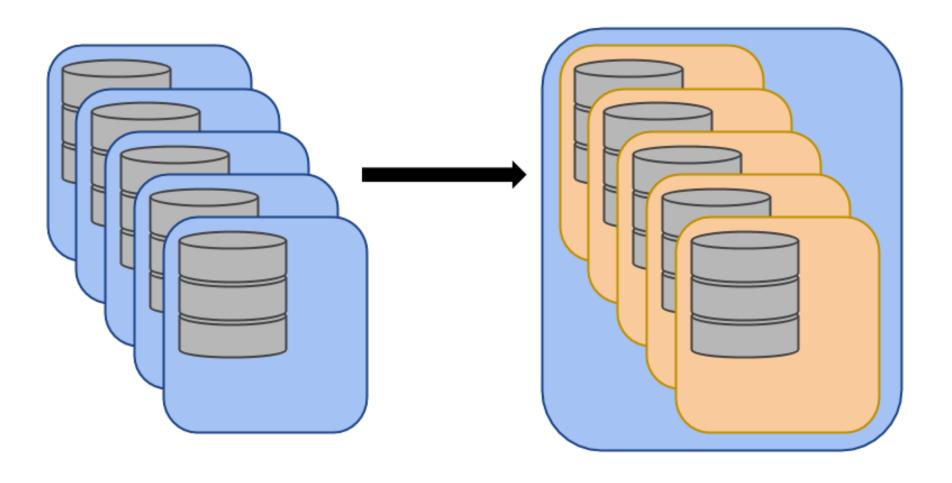

Basic Resource Consolidation

- Is it possible to consolidate your workloads? (CPU, RAM, Disk, Network)
- Do peak loads happen at different times of the day?
- Do continuous loads stay below 100% during the day?
- Do loads combine to take you above 100%?


Resource Consolidation


Basic Resource Consolidation

- Is it possible to consolidate your workloads? (CPU, RAM, Disk, Network)
- Do peak loads happen at different times of the day?
- Do continuous loads stay below 100% during the day?
- Do loads combine to take you above 100%?
- Some systems do not consolidate well, so don't try!

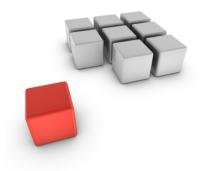


Virtualization

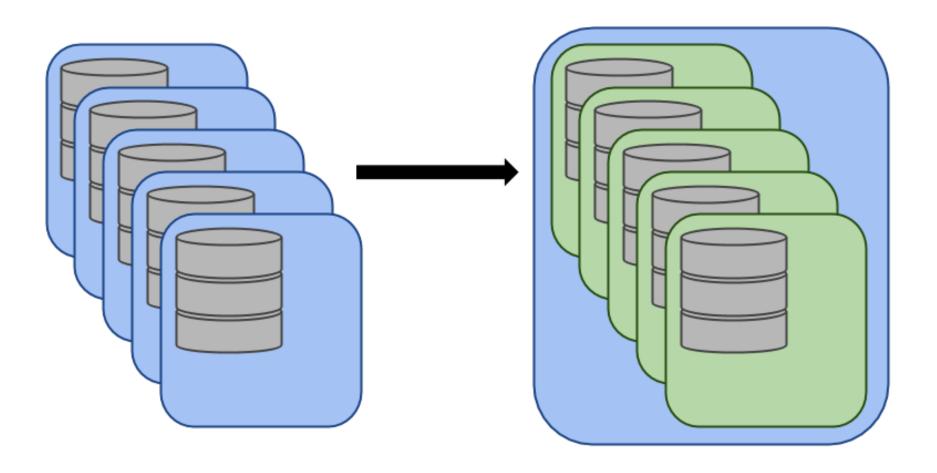
Virtualization

Virtualization: Pros

- Complete separation.
- Allows differing OS versions in each machine.
- Allows differing DB versions in each machine.
- Allows separation of duties if different teams need to control each VM.
- The virtual infrastructure can be used to provide basic high availability (HA) functionality.


Virtualization: Cons

- Overhead associated with running the hypervisor on the hardware.
- Overhead associated with running an entire OS in each VM.
- Each OS has to be patched and monitored separately.
- Overhead of multiple DBs running on a single physical server.
- Each DB has to be patched and monitored separately.
- Who is responsible for learning about and maintaining it?
- Licensing and support of the virtualization infrastructure.

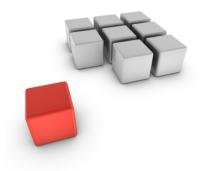


Containers

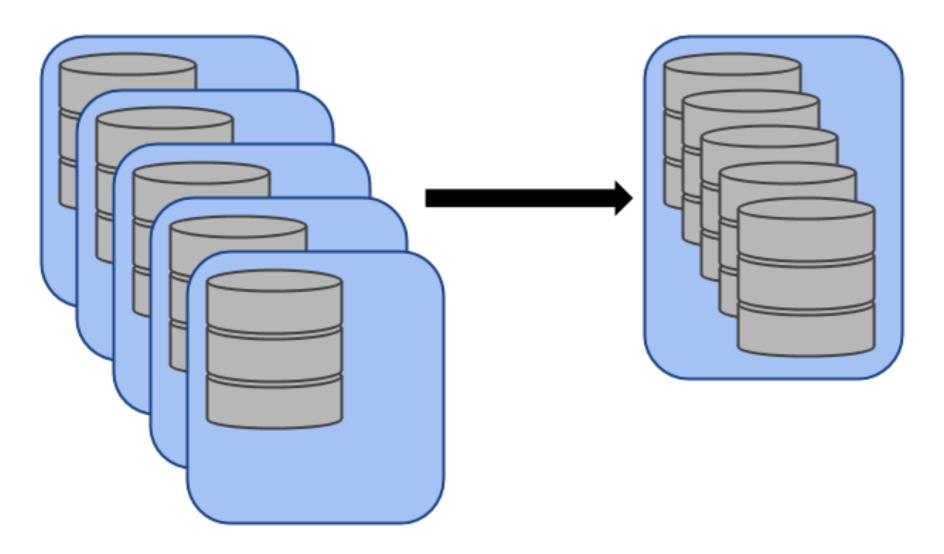
Containers

Containers: Pros

- Reduced overhead as only one OS is running on the physical hardware.
- Reduced OS patching as the OS is shared between all the containers.
- Some separation, making each container "feel" like a separate installations.
- With a separate Oracle installation in each container, each database could run at a different database version if required.
- The container functionality can be used to provide basic high availability (HA) functionality.


Containers: Cons

- Containers do not provide complete separation.
- The lack of complete separation means there may be security implications where containers are concerned.
- Operating system patches affect all containers.
- Who is responsible for learning about and maintaining it?
- Overhead of multiple DBs running on a single physical server.
- Each DB has to be patched and monitored separately.
- Licensing and support of the container feature. Not all container solutions are supported to run Oracle products.

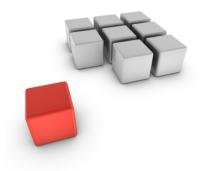


Multi-Instance

Multi-Instance

Multi-Instance: Pros

- Reduced overhead as only one OS is running.
- Reduced OS patching as the OS is shared between all the instances.
- Can share a single Oracle installation, or have a separate Oracle installation per database, allowing each database to run at a different database version if required.
- No additional cost or knowledge needed to support a containers or virtualization.
- Depending on the setup, patching and monitoring may be simplified. At a minimum, we may only need a single Oracle installation and a single Cloud Control agent on the server.


Multi-Instance: Cons

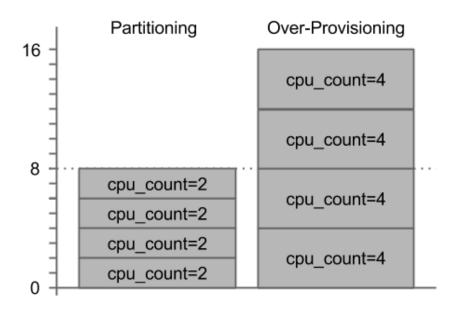
- No separation.
- The lack of complete separation means there may be security implications.
- Operating system patches affect all instances.
- Overhead of multiple DBs running on a single physical server.
- If you are using multiple Oracle installations, they will all have to be patched separately. If you are using a shared installation, all databases must be kept at the same version.
- Does not provide any High Availability (HA) functionality directly, but Data Guard and Real Application Clusters (RAC) can provide this at an extra cost.

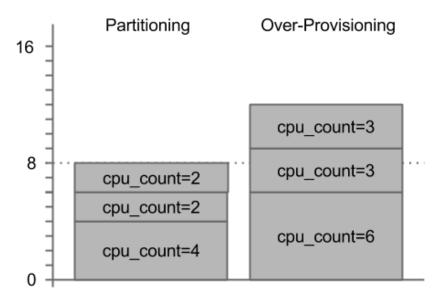
Multi-Instance Tips

Multi-Instance: Instance Caging

- Limit CPU for an instance using Instance Caging.
- Set CPU_COUNT for each instance.

```
ALTER SYSTEM SET cpu count = 2;
```


- Must have a Resource Manager resource plan assigned for this to work.
- Using the default plan is fine.


```
ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = default_plan;
```


Instance Caging: Over-Provisioning

Multi-Instance: Multithreaded Model

Oracle on UNIX/Linux is multi-process by default.

```
$ ps -ef | grep [o]ra oracle
  15356
          1 0 10:53 ?
                              00:00:00 ora pmon db12coracle
                              00:00:00 ora psp0 db12coracle
  15358
          1 0 10:53 ?
  15360 1 8 10:53 ?
                               00:01:27 ora vktm db12coracle
  15364 1 0 10:53 ?
                              00:00:00 ora gen0 db12coracle
                              00:00:00 ora mman db12coracle
  15366
         1 0 10:53 ?
                              00:00:00 ora diag db12coracle
  15370 1 0 10:53 ?
         1 0 10:53 ?
                               00:00:00 ora dbrm db12coracle
  15372
                              00:00:00 ora dia0 db12coracle
  15374
         1 0 10:53 ?
  15376 1 0 10:53 ?
                               00:00:00 ora dbw0 db12coracle
                               00:00:00 ora lgwr db12coracle
  15378 1 0 10:53 ?
                               00:00:00 ora ckpt db12coracle
  15380
          1 0 10:53 ?
                               00:00:00 ora smon db12coracle
  15382
          1 0 10:53 ?
  15384
          1 0 10:53 ?
                               00:00:00 ora reco db12coracle
                              00:00:00 ora lreg db12coracle
  15386
          1 0 10:53 ?
  15388 1 0 10:53 ?
                               00:00:03 ora mmon db12coracle
                               00:00:00 ora mmnl db12coracle
  15390
         1 0 10:53 ?
                               00:00:00 ora d000 db12coracle
  15392
          1 0 10:53 ?
  15394
          1 0 10:53 ?
                               00:00:00 ora s000 db12coracle
  15407
                               00:00:00 ora tmon db12coracle
         1 0 10:54 ?
                              00:00:00 ora tt00 db12coracle
  15409
          1 0 10:54 ?
         1 0 10:54 ?
                               00:00:00 ora smco db12coracle
  15411
                               00:00:00 ora fbda db12coracle
  15413
         1 0 10:54 ?
                              00:00:00 ora aqpc db12coracle
  15415
           1 0 10:54 ?
```

. . .

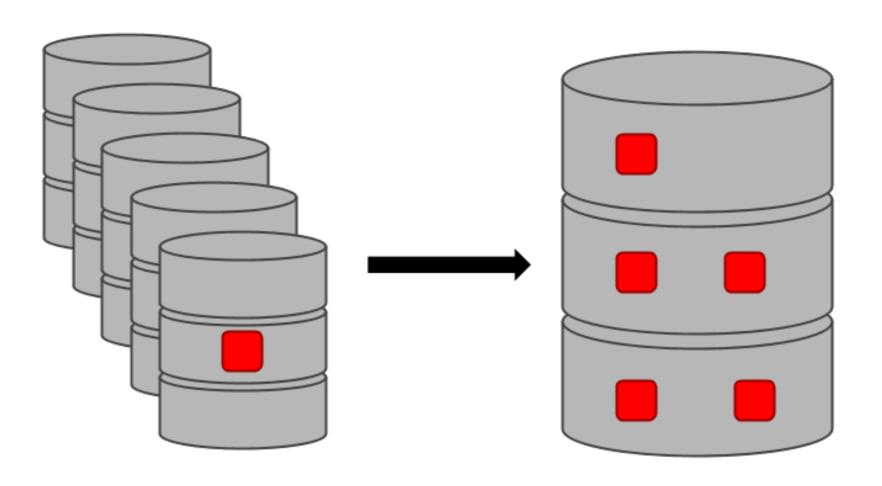
Multi-Instance: Multithreaded Model

■ In 12c you can make it multi-threaded (like Oracle on Windows).

```
CONN sys AS SYSDBA
ALTER SYSTEM SET threaded_execution=TRUE SCOPE=SPFILE;
SHUTDOWN IMMEDIATE;
STARTUP;
```

The number of processes per instance is greatly reduced.

Oracle can prioritise threads better than the OS can processes.



Schema Consolidation

Schema Consolidation

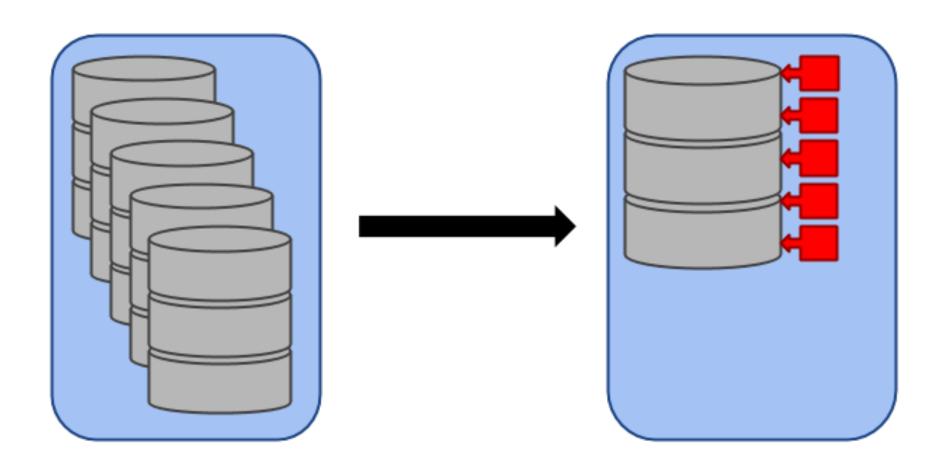
Schema Consolidation: Pros

- Reduced overhead as only one OS is running.
- Reduced overhead as only one DB instance is running.
- Only a single database installation is present.
- No additional cost and knowledge needed to support a containers or virtualization.
- Depending on the setup, patching and monitoring may be simplified. At a minimum, we may only need a single Oracle installation and a single Cloud Control agent on the server.



Schema Consolidation: Cons

- No separation, making it harder prioritise performance of specific schemas.
 Resource Manager can't control memory usage.
- The lack of complete separation means there may be security implications.
- Operating system patches affect all applications.
- Database patches affect all applications.
- Instance level changes affect all applications.
- Database recovery and flashback have to be planned carefully as all toplevel operations affect all schemas. This can be mitigated using tablespace point in time recovery (PITR).



Multitenant Option

Multitenant Option

Multitenant Option: Pros

- Reduced overhead as only one OS is running.
- Reduced overhead as only one DB instance is running.
- Only a single database installation is present.
- No additional cost or knowledge needed to support a containers or virtualization.
- Depending on the setup, patching and monitoring may be simplified. At a minimum, we may only need a single Oracle installation and a single Cloud Control agent on the server.

Multitenant Option: Cons

- The multitenant option is a chargeable Enterprise Edition option.
- No separation, making it harder prioritise performance of specific schemas.
 Resource Manager can not control memory usage.
- The lack of complete separation means there may be security implications.
- Operating system patches affect all applications.
- Database patches affect all applications. This can be mitigated by using the unplug/plugin approach to patches and upgrades.
- Instance level changes affect all applications. Some initialization parameters are PDB-specific.
- Database recovery and flashback have to be planned carefully as all toplevel operations affect all pluggable databases. This can be mitigated using PDB point in time recovery (PITR).

Cloud?

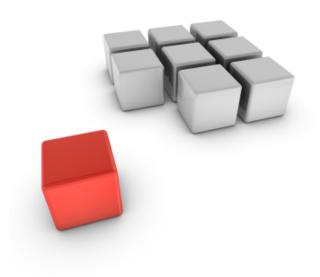
Cloud?

- Do you event care about consolidation?
- Virtual Machine:
 - Multi-instance
 - Schema consolidation
 - Multitenant Option
- Database as a Service (DBaaS):
 - Schema Consolidation
 - Multitenant Option?

Conclusion

Conclusion

- There is no single "best" solution for consolidation.
- You will probably use a mix-and-match approach.
- Pick what works for you!



The End...

Slides and Demos:

http://oracle-base.com/workshops

• Questions?

