
11 things about Oracle Database 11g Release 2

Thomas Kyte
http://asktom.oracle.com/

1 Do it yourself
Parallelism

Incrementally modify a table in parallel

• Used to do this manually all of the time
– Search for ‘diy parallel’ on asktom…
– Spent part of a chapter on ‘how to’ in Expert Oracle Database

Architecture

• I split by rowid ranges
– Split table into N equi-sized, non-overlapping chunks
– Create a job passing in the low and high rowids for each

range
– Job would process “where rowid between :lo and :hi”

• Or by primary key ranges using NTILE()
• DBMS_PARALLEL_EXECUTE automates both

approaches and makes it easy (and more functional)

Diyp.sql

2 Analytics are the coolest thing to happen
to SQL since the keyword SELECT

More Analytics!

• Long awaited LISTAGG
– First did STRAGG in 9iR2 with user defined aggregates

– Oracle Database 10g gave us a sys_connect_by_path ‘trick’

– Oracle Database 11g Release 2 makes it ‘easy’

Analytics Rock and Roll
SQL> select deptno,

2 substr(

3 max(sys_connect_by_path(ename, '; ')),

4 3) enames

5 from (

6 select deptno,

7 ename,

8 row_number()

9 over

10 (partition by deptno

11 order by ename) rn

12 from emp

13)

14 start with rn = 1

15 connect by prior deptno = deptno

16 and prior rn+1 = rn

17 group by deptno

18 order by deptno

19 /

DEPTNO ENAMES

---------- --------------------

10 CLARK; KING; MILLER

20 ADAMS; FORD; JONES;

SCOTT; SMITH

30 ALLEN; BLAKE;

JAMES; MARTIN;

TURNER; WARD

Analytics Rock and Roll
SQL> select deptno,

2 listagg(ename, '; ')
3 within group
4 (order by ename) enames
5 from emp
6 group by deptno
7 order by deptno
8 /

DEPTNO ENAMES
---------- --------------------

10 CLARK; KING; MILLER
20 ADAMS; FORD; JONES;

SCOTT; SMITH

30 ALLEN; BLAKE;
JAMES; MARTIN;
TURNER; WARD

Analytics Rock and Roll
SQL> select deptno,

2 ename,
3 row_number()
4 over (partition by deptno
5 order by ename) rn,
6 first_value(ename)
7 over (partition by deptno
8 order by ename) "1st ename",
9 nth_value(ename,3)

10 over (partition by deptno
11 order by ename) "3rd ename",
12 last_value(ename)
13 over (partition by deptno
14 order by ename
15 rows between current row
16 and unbounded following) "last ena me"
17 from emp
18 order by deptno, ename
19 /

Analytics Rock and Roll

SQL> select deptno,

2 ename,

3 row_number()

4 over (partition by deptno

5 order by ename) rn,

6 first_value(ename)

7 over (partition by deptno

8 order by ename) "1st ename",

9 nth_value(ename,3)

10 over (partition by deptno

11 order by ename) "3rd ename",

12 last_value(ename)

13 over (partition by deptno

14 order by ename

15 rows between current row

16 and unbounded following) "last ena me"

17 from emp

18 order by deptno, ename

19 /

DEPTNO ENAME RN 1st e 3rd ena last en

---------- -------- -- ----- ------- -------

10 CLARK 1 CLARK MILLER

KING 2 CLARK MILLER

MILLER 3 CLARK MILLER MILLER

20 ADAMS 1 ADAMS SMITH

FORD 2 ADAMS SMITH

JONES 3 ADAMS JONES SMITH

SCOTT 4 ADAMS JONES SMITH

SMITH 5 ADAMS JONES SMITH

30 ALLEN 1 ALLEN WARD

BLAKE 2 ALLEN WARD

JAMES 3 ALLEN JAMES WARD

MARTIN 4 ALLEN JAMES WARD

TURNER 5 ALLEN JAMES WARD

WARD 6 ALLEN JAMES WARD

3 Execute on a directory

External Tables can run code now

• External tables allow for a preprocessor
– Program is run when you SELECT from external table

– The ‘location’ is passed to the script/executable

– The executable does whatever it wants and writes to stdout

– Stdout is treated as the input file

• We need a way to control who can do what
• GRANT EXECUTE ON DIRECTORY handles that

EXECUTE and PREPROCESSOR

ops$tkyte%ORA11GR2> CREATE or replace DIRECTORY loa d_dir

2 AS '/mnt/hgfs/docs/Presentations/Seminar/11gr2'

3 /

Directory created.

ops$tkyte%ORA11GR2> CREATE or replace DIRECTORY exe c_dir

2 AS '/mnt/hgfs/docs/Presentations/Seminar/11gr2'

3 /

Directory created.

EXECUTE and PREPROCESSOR
ops$tkyte%ORA11GR2> CREATE TABLE EMP_ET

2 (

3 "EMPNO" NUMBER(4),

4 "ENAME" VARCHAR2(10),

5 "JOB" VARCHAR2(9),

6 "MGR" NUMBER(4),

7 "HIREDATE" DATE,

8 "SAL" NUMBER(7,2),

9 "COMM" NUMBER(7,2),

10 "DEPTNO" NUMBER(2)

11)

12 ORGANIZATION external

13 (TYPE oracle_loader

14 DEFAULT DIRECTORY load_dir

15 ACCESS PARAMETERS

16 (RECORDS DELIMITED BY NEWLINE

17 preprocessor exec_dir:'run_gunzip.sh'

18 FIELDS TERMINATED BY "|" LDRTRIM

19)

20 location ('emp.dat.gz')

21)

22 /

Table created.

EXECUTE and PREPROCESSOR

ops$tkyte%ORA11GR2> !file emp.dat.gz

emp.dat.gz: gzip compressed data, was "emp.dat", fr om Unix, last
modified: Wed Oct 7 12:48:53 2009

ops$tkyte%ORA11GR2> !cat run_gunzip.sh

#!/bin/bash

/usr/bin/gunzip -c $*

ops$tkyte%ORA11GR2> select empno, ename from emp_et where rownum <= 5;

EMPNO ENAME

---------- ----------

7369 SMITH

7499 ALLEN

7521 WARD

7566 JONES

7654 MARTIN

EXECUTE and PREPROCESSOR, interesting idea…

ops$tkyte%ORA11GR2> CREATE TABLE ls

2 (

3 line varchar2(255)

4)

5 ORGANIZATION external

6 (TYPE oracle_loader

7 DEFAULT DIRECTORY load_dir

8 ACCESS PARAMETERS

9 (RECORDS DELIMITED BY NEWLINE

10 preprocessor exec_dir:'run_ls.sh'

11 FIELDS TERMINATED BY "|" LDRTRIM

12)

13 location ('run_ls.sh')

14)

15 /

Table created.

EXECUTE and PREPROCESSOR, interesting idea…

ops$tkyte%ORA11GR2> select * from ls;

LINE

--- ------------

11 things about 11gr2.ppt

diyp.sql

ebr.old.sql

ebr.sql

emp.ctl

emp.dat.gz

EMP_ET_26122.log

emp_et.sql

LS_26122.log

run_gunzip.sh

run_ls.sh

11 rows selected.

4 Recursive Subquery Factoring

Recursive Subquery Factoring

• ANSI SQL replacement for connect by
• Can be

– Easier to understand than connect by

– Unless of course, you have been using connect by for 22
years – in which case it looks confusing

Recursive Subquery Factoring

ops$tkyte%ORA11GR2> with emp_data(ename,empno,mgr,l)

2 as

3 (select ename, empno, mgr, 1 lvl from emp where mgr is null

4 union all

5 select emp.ename, emp.empno, emp.mgr, ed.l+1

6 from emp, emp_data ed

7 where emp.mgr = ed.empno

8)

9 SEARCH DEPTH FIRST BY ename SET order_by

10 select l,

11 lpad('*',2*l,'*')||ename nm

12 from emp_data

13 order by order_by

14 /

Recursive Subquery Factoring

L NM

---------- --------------------

1 **KING

2 ****BLAKE

3 ******ALLEN

3 ******JAMES

3 ******MARTIN

3 ******TURNER

3 ******WARD

2 ****CLARK

3 ******MILLER

2 ****JONES

3 ******FORD

4 ********SMITH

3 ******SCOTT

4 ********ADAMS

14 rows selected.

Recursive Subquery Factoring

ops$tkyte%ORA11GR2> with data(r)
2 as
3 (select 1 r from dual
4 union all
5 select r+1 from data where r < 5
6)
7 select r, sysdate+r
8 from data;

R SYSDATE+R
---------- ---------

1 08-OCT-09
2 09-OCT-09
3 10-OCT-09
4 11-OCT-09
5 12-OCT-09

Recursive Subquery Factoring

• ANSI SQL replacement for connect by
• Can be

– Easier to understand than connect by

– Unless of course, you have been using connect by for 22
years – in which case it looks confusing

– Used to solve Sudoku puzzles!

5 Improved Time Travel

Improved Time Travel

• Flashback Data Archive
– Query data as of 5 days, 5 weeks, 5 months, 5 years –

whatever – in the past

– http://www.oracle.com/technology/oramag/oracle/08-
jul/o48totalrecall.html

• Article by Jonathan Gennick on this feature for more info

• How does it work…

How Does Flashback Data Archive Work?

• Primary source for history is the undo
data

• History is stored in automatically created
history tables inside the archive

• Transactions and its undo records on
tracked tables marked for archival

– Undo records not recycled until history is archived

• History is captured asynchronously by
new background process (fbda)

– Default capture interval is 5 minutes

– Capture interval is self-tuned based on system
activities

– Process tries to maximize undo data reads from
buffer cache for better performance

– INSERTs do not generate history records

• Alter base table – history table automatically adjusts
– Drop, Rename, Modify Column
– Drop, Truncate Partition
– Rename, Truncate Table

• Flashback query supported across DDL changes

• Complex DDL changes (e.g. table split) accommodated
– Associate/Diassociate history table via DBMS_FLASHBACK_ARCHIVE

package

Oracle Database 11g Release
Total Recall Schema Evolution Support

D
ro

p
C

ol
um

n

A
dd

C

ol
um

n

time Flashback Version Query

���� ���� ����

����
����

����A
dd

C

ol
um

n

6 You’ve got Mail

File Watchers

• As files arrive in some directory
– An event is generated

– And your code can be invoked to deal with it…

File Watchers

ops$tkyte%ORA11GR2> begin

2 dbms_scheduler.create_credential(

3 credential_name => 'watch_credential',

4 username => 'tkyte',

5 password => ‘foobar');

6 end;

7 /

PL/SQL procedure successfully completed.

File Watchers

ops$tkyte%ORA11GR2> create or replace directory MY_ FILES as
'/home/tkyte/files'

2 /

Directory created.

ops$tkyte%ORA11GR2> create table files

2 (

3 file_name varchar2(100),

4 loaded timestamp,

5 contents clob

6);

Table created.

File Watchers

ops$tkyte%ORA11GR2> create or replace procedure pro cess_files

2 (p_payload in sys.scheduler_filewatcher_result)

3 is

4 l_clob clob;

5 l_bfile bfile;

6 begin

7 insert into files

8 (loaded, file_name, contents)

9 values (p_payload.file_timestamp,

10 p_payload.directory_path || '/' || p_paylo ad.actual_file_name,

11 empty_clob()

12) returning contents into l_clob;

13

14 l_bfile := bfilename('MY_FILES', p_payload .actual_file_name);

15 dbms_lob.fileopen(l_bfile);

16 dbms_lob.loadfromfile(l_clob, l_bfile, dbm s_lob.getlength(l_bfile));

17 dbms_lob.fileclose(l_bfile);

18 end;

19 /

Procedure created.

File Watchers

ops$tkyte%ORA11GR2> begin
2 dbms_scheduler.create_program(
3 program_name => 'file_watcher',
4 program_type => 'stored_procedure',
5 program_action => 'Process_Files',
6 number_of_arguments => 1,
7 enabled => false);
8 dbms_scheduler.define_metadata_argument(
9 program_name => 'file_watcher',

10 metadata_attribute => 'event_message',
11 argument_position => 1);
12 dbms_scheduler.enable('file_watcher');
13 end;
14 /

PL/SQL procedure successfully completed.

File Watchers

ops$tkyte%ORA11GR2> begin

2 dbms_scheduler.create_file_watcher(

3 file_watcher_name => 'my_file_watcher',

4 directory_path => '/home/tkyte/files',

5 file_name => '*',

6 credential_name => 'watch_credential',

7 destination => null,

8 enabled => false);

9 end;

10 /

PL/SQL procedure successfully completed.

File Watchers

ops$tkyte%ORA11GR2> begin
2 dbms_scheduler.create_job(
3 job_name => 'my_file_job',
4 program_name => 'file_watcher',
5 event_condition => 'tab.user_data.file_size > 10',
6 queue_spec => 'my_file_watcher',
7 auto_drop => false,
8 enabled => false);

10 end;
11 /

PL/SQL procedure successfully completed.
ops$tkyte%ORA11GR2> exec

dbms_scheduler.enable('my_file_watcher,my_file_job');

PL/SQL procedure successfully completed.

File Watchers

ops$tkyte%ORA11GR2> select * from files;

FILE_NAME LOADED CONTENTS

------------------------------ ------------------------------ ---------------

/home/tkyte/files/file4.txt 07-OCT-09 07.37.22.000000 PM hello world, ho

w are you

hello world, ho

w are you

hello world, ho

w are you

hello world, ho

w are you

7 Deferred Segment Creation

Deferred Segment Creation

• Segments (tables, indexes, etc) normally allocate an
initial extent

• They might be small, but they exist
• If you do something “small” (or fast) over and over a

lot – it gets “big” (or slow)
• Many third party applications create thousands of

tables
– And then use 100 of them

• Deferred segment creation allows us to put off initial
extent allocation until the first row is put into a
segment.

Deferred Segment Creation

SQL> alter session set

2 deferred_segment_creation=false;

Session altered.

SQL> create table t1

2 (x int

3 constraint t1_pk

4 primary key,

5 y int

6 constraint t1_y

7 unique,

8 z clob

9)

10 lob(z)

11 store as t1_z_lob

12 (index t1_z_lobidx);

Table created.

SQL> select segment_name,

2 extent_id,

3 bytes

4 from user_extents

5 order by segment_name;

SEGMENT_NAM EXTENT_ID BYTES

----------- ---------- ----------

T1 0 65536

T1_PK 0 65536

T1_Y 0 65536

T1_Z_LOB 0 65536

T1_Z_LOBIDX 0 65536

Deferred Segment Creation

SQL> alter session set

2 deferred_segment_creation=true;

Session altered.

SQL> create table t2

2 (x int

3 constraint t2_pk

4 primary key,

5 y int

6 constraint t2_y

7 unique,

8 z clob

9)

10 lob(z)

11 store as t2_z_lob

12 (index t2_z_lobidx);

Table created.

SQL> select segment_name,

2 extent_id,

3 bytes

4 from user_extents

5 order by segment_name;

SEGMENT_NAM EXTENT_ID BYTES

----------- ---------- ----------

T1 0 65536

T1_PK 0 65536

T1_Y 0 65536

T1_Z_LOB 0 65536

T1_Z_LOBIDX 0 65536

No Change!

Deferred Segment Creation

SQL> insert into t2 values (1, 2, 'hello world');

1 row created.

SQL> select segment_name,

2 extent_id,

3 bytes

4 from user_extents

5 order by segment_name;

SEGMENT_NAM EXTENT_ID BYTES

----------- ---------- ----------

T1 0 65536

T1_PK 0 65536

T1_Y 0 65536

T1_Z_LOB 0 65536

T1_Z_LOBIDX 0 65536

T2 0 65536

T2_PK 0 65536

T2_Y 0 65536

T2_Z_LOB 0 65536

T2_Z_LOBIDX 0 65536

10 rows selected.

8 Flash Cache

Oracle Database 11g Release 2
Reduce I/O bandwidth requirement with Flash Cache

• A transparent extension of the database buffer cache
using solid-state disk (SSD) technology
– SSD acts as a Level 2 cache (SGA is Level 1)

• Faster than disk (100x faster for reads)

• Cheaper than memory ($50 per gigabyte)

• Large capacity (hundreds of gigabytes per flash disk)

• Fewer drives and better performance
– For I/O throughput, users often use hundreds of drives today

– Flash enables I/O throughput without all the drives

– Large jobs complete faster

Flash Cache
How it works

120 GB
Flash Cache

16 GB
SGA Memory

360 GB
Magnetic Disks

Install Flash Drive in the Host Server

• Set two init.ora parameters:
• db_flash_cache_file = <filename>

• Specifies the path to the flash disk

• db_flash_cache_size=<size>
• Specifies the amount of flash disk to use

Extended Buffer Cache

Flash Cache
How it works

120 GB
Flash Cache

16 GB
SGA Memory

Hot Data

1. Blocks read
into buffer

cache

2. Dirty blocks flushed to
disk

360 GB
Magnetic Disks

Cold Data

Extended Buffer Cache

Flash Cache
How it works

Extended Buffer Cache

120 GB
Flash Cache

16 GB
SGA Memory

Hot Data Warm Data

1. Blocks read
into buffer

cache

3. Clean blocks
moved to

Flash Cache
based on

LRU* (once
SGA is full)

2. Dirty blocks flushed to
disk

360 GB
Magnetic Disks

Cold Data

* Headers for Flash
Cached blocks kept in

SGA

Flash Cache

Extended Buffer Cache

120 GB
Flash Cache

16 GB
SGA Memory

Hot Data Warm Data

1. Blocks read
into buffer

cache

3. Clean blocks
moved to

Flash Cache
based on

LRU*

2. Dirty blocks flushed to
disk

4. User Process
reads blocks

from SGA
(copied from

Flash Cache if
not in SGA)

360 GB
Magnetic Disks

Cold Data

* Headers for Flash
Cached blocks kept in

SGA

9 Parallel Improved

Automated Degree of Parallelism
How it works

SQL
statement

Statement is hard parsed
And optimizer determines

the execution plan

Statement
executes serially

Statement
executes in parallel

Optimizer determines
ideal DOP

If estimated time
greater than threshold

Actual DOP = MIN(default DOP, ideal DOP)
If estimated time less

than threshold
PARALLEL_MIN_TIME_THRESHOLD

Parallel Statement Queuing
How it works

SQL
statements

Statement is parsed
and Oracle automatically

determines DOP

If enough parallel
servers available

execute immediately

If not enough parallel
servers available queue

128163264

8

FIFO Queue

When the required
number of parallel servers
become available the first

stmt on the queue is
dequeued and executed

128

163264

In-Memory Parallel Execution
How it works

SQL
statement

Determine the size of the
table being looked at

Read into the buffer
cache on any node

Table is extremely small

Always use direct read
from disk

Table is a good candidate
for In-Memory Parallel

Execution

Table is
extremely Large

Fragments of Table are
read into each node’s

buffer cache

Only parallel server on
the same RAC node

will access each
fragment

10 Edition-based
Redefinition

Yes, this is here twice

But only because

It is the killer feature

Of Oracle Database 11g Release 2

It is worth 2 features

10+Edition-based
Redefinition!

Online Application Upgrade
Edition-based redefinition

• Code changes are installed in the privacy of a new
edition

• Data changes are made safely by writing only to new
columns or new tables not seen by the old edition

• An editioning view exposes a different projection of
a table into each edition to allow each to see just its
own columns

• A crossedition trigger propagates data changes
made by the old edition into the new edition’s
columns, or (in hot-rollover) vice-versa

DEMONSTRATION

Edition-based
Redefinition

ebr.sql

<Insert Picture Here>

How to get there

What are my upgrade paths?
Predictable performance post-upgrade

≥≥≥≥ 10.2.0.210.2.0.210.2.0.210.2.0.2

≥≥≥≥ 11.1.0.611.1.0.611.1.0.611.1.0.6

10.1.0.510.1.0.510.1.0.510.1.0.5

9.2.0.89.2.0.89.2.0.89.2.0.8

11.211.211.211.2

SQL Plan Management
Automated SQL tuning

For More Information

search.oracle.com

or

oracle.com

